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I. Introduction

Conjugate gradient type algorithms combined with preconditioning are among the most

effective iterative procedures for solving large sparse nonsingular linear systems

=b. (1)

In recent years, polynomial preconditioning has attracted much interest. The technique

consists of selecting a polynomial a of small degree and then applying a conjugate gradient

type method to one of the two linear systems

• (A)Az -- ,_(A)b (2)

(left preconditioning), or

A,s(A)y - b, z -,s(A)y (3)

(right preconditioning). Remark, that (2) and (3) are both equivalent to the original

linear system (1). Moreover, the systems (2) and (3) have the same coefficient matrix

8(A)A - As(A). Clearly, the polynomial 8 should be chosen such that the conjugate

gradient iteration for (2) resp. (3) converges as fast as possible.

For the case of Hermitian positive definite A, the idea goes back to Rutishauser [24]

who proposed polynomial preconditioning in the fifties as a remedy for roundoff in the

classical conjugate gradient (CG hereafter) algorithm of Hestenes and Stiefel [17]. The

recent revival [18] of Rutishauser's method and the general interest in polynomial precon-

ditioning is mainly motivated by the attractive features of this technique for vector and

parallel computers (see [25]for a survey).

In thisnote, we are concerned with polynomial preconditioning for linearsystems (1)

with Hermitian, but indefinitecoefficientmatrices A. An obvious strategy for the design

of the preconditioner is to choose a such that a(A)A is as close as possible to the identity

matrix I. This approach was studied in detail by Ashby [2]and Ashby, Manteulfel, and

Saylor [3]. Note that the resulting preconditioned system (2) resp. (3) is then Hermitian

positive definite and thus can be solved by the standard CG algorithm_

The purpose of this paper is to document our study of a second preconditioning

strategy which, in contrast to the first approach, leaves the preconditioned matrix s(A)A

indefinite. Roughly speaking, $ is chosen such that s(A)A is as close as possible to I

on the positive part of the spectrum of A and as close as possible to #I, where p E ]R

is some negative constant, on the negative part of the spectrum of A. In particular, we

will show how polynomials s of this type can be obtained as solutions of a family of

Chebyshev approximation problems depending on two paramaters, namely p and a weight

factor w E JR. The question of how to choose these parameters in order to speed up the

convergence of the iteration as much as possible will also be addressed. Finally, note that,

since the resulting matrix s(A)A is now indefinite, the standard CG algorithm is no longer

suitable for solving (2) resp. (3), and we use the minimal residual (MR hereafter) method

instead.

The paper is organized as follows. In Section 2, we recall some basic facts about

the MR algorithm. In Section 3, matrices with spectrum symmetric to the origin are
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considered, and it is shown that, in certain situations, the MR method is equivalent to

the CG algorithm applied to the normal equations. In Section 4, we are concerned with

the computation of the asymptotic convergence factor for the MR method based on the

knowledge of two intervals which contain all eigenvalues of A. In Section 5, a two-parameter

family of Chebyshev approximation problems is introduced, and some basic properties are

listed. In Section 6, we consider indefinite polynomial preconditioners and show that there

is an intimate connection with the class of approximation problems investigated in the

previous section. A Remez type algorithm for the numerical solution of these problems is

described in Section 7. Some numerical examples of indefinite polynomial preconditioners

and their associated asymptotic convergence factors are presented in Section 8. Finally,

we draw our conclusions in Section 9.

Throughout this paper, A is assumed to be a nonsingular Hermitian, but indefinite

N × N matrix, or(A) denotes the spectrum of .4, and [Ixl12 --- _ is the Euclidian norm

of z E C N. Moreover, the notation H, will be usecl for the set of all complex polynomials

of degree at most n. Finally, we denote by H (0 the subclass which consists of all real

polynomials in H,.

2. The minimal residual algorithm. Error bounds

Let z0 E C N be any initial guess for the true solution A-lb of (1), and let ro = b - Azo

be the corresponding residual vector. Moreover, we denote by

K, := span{r0, At0, A_r0,..., A"-lro} (4)

the nth Krylov subspace of C N generated by r0 and A. Starting from z0, the MR method

generates a sequence of approximations z,, n -- 1,2,..., to A-lb which are uniquely

defined by the minimal residual property

Ilb-Ax.llu= rain Ilb-Azllu, x. _ xo + K.. (5)
zEzo+Kn

For Hermitian positive definite matrices A, the M_R algorithm was introduced by Stiefel

[26] as a variant of the classical CG method. However, the algorithm given in [26] may

break down (see e.g. [5,10]) for indefinite Hermitian matrices. A stable implementation

(algorithm MINRES in [22]) of the MR approach for indefinite Hermitian matrices was

first devised by Paige and Saundexs [22]. The main ingredient of MINRES is the celebrated

Lanzcos algorithm [20].

Algorithm I (Lanczos).

o) Set ,,o-- O,81 -- 11"o112,v = ,'o.
Forn = 1,2,...

1) Lf'/_, = O, stop.

Otherw/se, compute

2) v. = v/_., a. = v_Av.,
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,, = .4,,,,- 0.._,,.- #._,.-1, #.+1 = 11"112•

In the following proposition, some basic facts about the Lanczos algorithm and its con-

nection with the MR method axe listed. We refer the reader to [13, pp. 325] and [22] for
proofs. The notations

V. := (vl,v2,...,v.) and & :=

¢0.a f12 0 -.- 0

_2 a'2 "'" "'" "

0 "'. "'. "'. 0

• t ! •

i° ., I= #n

0 -.. 0 fin 0.n

0 ...... 0 #n+1

(o)

are used. Note that Sn is an (n + 1) x n matrix.

Proposition 1.

a)/n exact arithmetic, A/gorithm I stops/'or n = m + 1 where m := dim KN.

b) The termination/ndex m IS equal to the mlnimM number of components in any expan-

sion of to into or_honormal eigenvectors o[ A, i.e.

m

ro = E pjuj,
j=l

where pj > O, Auj = A(J)uj, A(a) < A(2) < -.. < A(m),
f I zj = k

U_Uk
o _j#k

(7)

c) For n = 1,2,...,m the nth iteratez. of the MR method is 6dven by z. = Zo + V.y.

where y. is the solution o[ the linear system

(8)

Moreover, in exact arithmetic z,. = A-lb.

In MINRES, the MR iterates are computed via solving the linear system (8). This can

be done very efficiently using a QR decomposition of 5".. Furthermore, such a factorization

of 5'. is readily obtained from the QR decomposition of S._I in the previous sfep (see [22]

for details). The resulting algorithm can be stated as follows.

Algorithm 2 (MINRES implementation [22] of the MR method).

0) Choose zo E C N and set v = b - .4z0, v0 = P0 = P-a = O,

#I - _,- llvll2,co= =-a- 1,so- s__- o.
For n = 1, 2,...

4



I) If fl,, - O, stop: z,,-1 solves Az = b.

Othetw/se, compute

2) v. = ./a., _. = v."A,_.,
,, = Av. - ,_.,,. - _.v._,, _.+_ = ll"ll2,

3) _. = 8.__3., _,, = s.-l_,, + c.-lc,,-_B,,,
7,in --- On_lOt n -- $n_lCn_2]_n,

7. V/_2+ 2= 3.+_, _. = _.l'r., *. = 3.+_I_.,
4)p. = (_.- 6.v.__- _.p.-2)l'r.,

z. = z.-1 + _.p. with _. = c.O.,

_.+1 =-s._..

Remark 1. The finite termination property of the Lanczos algorithm does no longer hold

in the presence of roundoff error (see e.g. [13, pp. 332]), and the stopping criterion stated

in Algorithm 2 is not useful in practice. Instead, one should terminate the iteration as

soon as the norm [[r,][2 of the residual vector r, = b - Az, is sufficiently reduced. As

Paige and Saunders [22] have pointed out, [[r,[[2 can be obtained without computing the

vector rn itself by using the identity []rn[[2 = fllsas2 ""s..

Remark 2. Other numerically stable implementations of the MR method for Hermitian

indefinite matrices were devised by Fletcher [9] and Chandra [5]. See also [10, 28] for

further properties of the M'R approach. Finally, we note that -- as is typical for conjugate

gradient type algorithms -- there is an intimate connection between the MR method and

orthogonal polynomials (see [11]).

For the choice of a suitable preconditioner for a conjugate gradient type algorithm,

it is crucial to have error bounds for its iterates. Next, we state such estimates for the

MR method. For this purpose, some information on the location of the eigenvalues of A is

necessary. Here and in the sequel, we assume that two intervals [a, b] and [c, d] are known
such that

_(a) c [a, b] u [c, Z] where c<d<0<a<b. (9)

Note that, ideally, b resp. c would be the largest resp. smallest eigenvalue of A and a resp.

d the smallest positive resp. largest negative eigenvalue.

By the standard technique, expressing the Krylov subspace (4) K, = {q(A)ro [ q E

II,-i } in terms of polynomials and using the expansion (7) of r0, one readily deduces from

(5) the following result.

Theorem 1. For n = 1,2... :

<_ E.(a,b,c,d) (10)
lib-A_oll_

where E.(a, b, c, d) is the optimM value of the approximation problem

F_.(a, b, c, d) := rain max Ip(A)I • 01)
ven(.'):p(o)=_ XEt,.,b]u[c,a]

Note that the outlined derivation of the bound (10), actuaUy leads to the complex

version of (11) with H, instead of H (r). Standard results (e.g. [21]) from approximation
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theory guarantee that there alwaysexists a unique optimal polynomial P*,, for this complex

approximation problem. Moreover, it is easily verified (cf. [21, Theorem 27]) that p_ is

real, and therefore it is sufficient to consider only polynomials p E H (r) in (11).

Unfortunately, the solution of (11) is explicitly known only for special cases. For

example, it is well known (see e.g. [2]) that for intervals of equal length b - a - d - c

the optimal polynomials axe suitably transformed Chebyshev polynomials. The solution

of (11) is also known for a variety of other parameters a, b, c, d, and can be found in the

classical work of Achieser [1] (see also Peherstorfer [23, Section 5]). For the general case,

there is no dosed expression for the optimal value En(a, b, c,d) of (11). However, it is

known that for n --* v¢ this quantity behaves like t_n where tc -- _(a, b, c, d) E (0,1). More

precisely, it holds

,_,oo(E,(a,llm b,c,d)) 1/" -.-" tc(a,b,c,d) and 0 < tc(a,b,c,d) < 1 (12)

(see Eiermann, Niethammer, and Vaxga [8], where this result is established for more general

sets in the complex plane), to(a, b, c, d) is usually called the asymptotic convergence factor.

In Section 4, we will derive an explicit formula for _ in terms of elliptic integrals. Based

on this representation, t¢ can be very easily computed numerically.

3. A remark on matrices with symmetric spectrum

The simplest way to obtain a conjugate gradient type method for linear systems Az -- b

with arbitrary nonsingulax coefficient matrix A, is to apply the standard CG algorithm

to the Hermitian positive definte normal equations AItAx - Anb. The drawback of this

approach is that the condition number of AriA is the square of that of the original matrix

A with the consequence that the resulting iteration will, in general, converge very slowly

(see e.g. [27]). However, there are situations where working with the original system offers

only little advantage over solving the normal equations or where the two approaches axe

even equivalent. Roughly speaking, this is the case if A has many eigenvalues in the right

as well as in the left halfplane of C and/or if a(A) exhibits certain symmetries.

In this section, we are concerned with indefinite Hermltian matrices A with such a

symmetrical spectrum. Since A - A n, the normal equations corresponding to the original

system (1) assume the form

A2z = Ab. (13)

Next, we apply the standard CG algorithm [17] to (13) with z0 E C N as initial guess. The

resulting procedure -- referred to as CGNE method in the sequel -- generates a sequence

of iterates z_ NE, k -- 1, 2,... which are characterized by the minimization property

]]b- AzkC_vE[]2 - rain []b- Az[]2 , Zk e Zo + K_.
xEzo+K_

(14)

Here

K_ := span{Aro,A_(Aro),A'(Aro), ... ,A2(k-')(Aro)}
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is the hth Krylov subspace generated by Aro and A 2. As in the previous section, we denote

by zn, n - 1,2,..., the iterates produced by the MR algorithm applied to the original

system Az - b. It is assumed that the MR and CGNE methods are both started with the

same initial guess z0.

It turns out that the MR and CGNE approaches are equivalent whenever the elgen-

values of A are symmetric to the origin, i.e.

,_ • ,(A) implies - ,_ • a(A), (15)

and the starting residual r0 has a "symmetric" expansion into eigenvectors of A. More

precisely, we have the following

Theorem 2. Let m, PJ, "_(J), J = 1,..., m, be defined by the expansion (7) of r0 and

assume that 1 := m/2 • IV and that

A(j) = -A ("+l-j), Pj = Pro+l-j, j = 1,2,.•.,I, (16)

holds. Then, fork = 1,2,...,I

Z2k "-- Z2k.t_ 1 = XkC-'GNE

Proof: Let ul,..., um be the eigenvectors of A which occur in the expansion (7) of r0.

It is convenient to introduce the following notation• A vector v • C N is called even, resp.

odd, if

v'-'___ _juj, with _/=_m+l-/, resp. _.f=-_m+]-j for j--l,2,...,l.
j----1

Obviously, the following properties hold:

(i) For any "r • C, 7v is even, resp. odd, if v is even, resp. odd.

(ii) Av is even, resp. odd, if v is odd, resp. even•

(iii) vHAv = 0 for any even or odd v.

Next consider Algorithm 1 and let Vn, n - 1,..., m, be the Lanczos vectors. Clearly, r0

and therefore also vl are even vectors. Using (i)-(iii), it follows by induction that v, is

even, resp. odd, if its index n is odd, resp. even, and that

an--O and _,+]vn+l--Avn-_nvn-1 for n--l,2,...,m. (17)

The first identity in (17) and the defufition of Sn in (6) imply that the linear system (8)

has the following structure:

0

×

0

0

0 x 0 .-. 0

x 0 x ".

0 x 0 "'. 0

x 0 ". ". x

"'. "'. "'. x 0

• .. 0 x 0 x

y i,i.. (18)
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Here, a "×" indicates a possible nonzero entry. By reordering the equations and the

unknowns, a system of the type (18) can be transformed into one with the block structure

x 0 [V(_) x

where y (1) resp. V(2) contains all components of y with odd resp.

9(i) = 0 and, from part c) of Proposition 1, we deduce that

even index. Hence

z2k+l = z2k E zo + span{_, v4, ve, . . . , v2k }. (19)

On the other hand, (17) implies that the subspace on the right-hand side of (19) is just

the Krylov space K_ (note that Aro =/32/_1v2). Thus z_k _ z0 + and, in view of (5)

and (14), it follows that z2k = z_. This concludes the proof of the theorem. •

Remark 3. The eigenvalues of Hermitian matrices of the type

A-- I_ H _), whereBisanypxqmatrix.

always fulfill the symmetry condition (15) (see e.g. [13, pp. 285]). Moreover, it is easily

verified that the remaining part of the assumption (16) is guaranteed if the starting residual

is of the form

(o> (o>o,.r0-- , U E C p or r0-- vE

Remark 4. In [10], it is shown that the assumption (16) implies a similar equivalence

between CG applied to the "inner" normal equations A2V -- b, Ay = z and two other

conjugate gradient type algorithms for Az - b, namely SYMMLQ [22] and Fridman's

method (see e.g. [28, 10]).

4. Computation of the asymptotic convergence factor for two intervals

In this section, we are concerned with the actual computation of the asymptotic con-

vergence factor _(a, b, c, d) defined in (12). As Eiermann, Li, and Varga [7] pointed out,

asymptotic convergence factors -- not only for the union of two real intervals, but for more

general compact sets _ C C -- can be expressed in terms of the Green's function G(A; c_)

(see e.g. [29, pp. 65]) for _c :__ 4_ \ f_ with pole at infinity. Note that the existence of

G(A; cx_) is guaranteed, if _c is of finite connectivity; moreover, the Green's function is

then uniquely defined by the following three properties:

(i) a(.; oo) is a real harmonic function on C \ n.

(ii) There is a r0 E ]R such that G(A; oo) - log {k} is harmonic for all k E C with {k{ > r0.

(iii) limA--Ao G(A; oo) = 0 for all A0 E 0fZ.
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For _ - [a, b] U [c, _, the set Gc is doubly connected, and by applying the results from

[7, Section 3] it follows that

I¢(a, b, c, d) -- exp(-G(0; oo)). (20)

Next, we use the connection (20) with the Green's function to derive a representation of

_(a, b, c, d) in terms of elliptic integrals.

First, let _c C C be any doubly connected region with oo E Go. Suppose we know a

conformal mapping

f : Ar ---* _ c, with f(Ar) "- _ c, (21)

of some annulus

A,.:-{zeCIr<]z]<l}, with 0<r<l, (22)

onto _c. Moreover, it is assumed that

v := f-'(oo) satisfies r < r < 1. (23)

Note that (23) can always be achieved by a simple rotation in the z-plane. By means of ./,

the problem of finding the Green's function for _e can be reduced to that of determining

the Green's function Gr(z; r) for the annulus Ar with pole at r. More precisely, the

following identity

G(A;oo) =Gr(f-l(A);r), A • no. (24)

holds (e.g. [16, p. 259]). However, there are explicit representations for Gr(z; r). Here we

will use the following formula (see [16, pp. 259]):

(log]z[ [_¢=-¢¢ ri"(-z/(rr))J I (25)Gr(z;_) =, i-oos¥ 1)log_-log E_-= ,_'(-rz/;p "

From now on, let fl :- [a,b] O [c,d]. So far, we have shown that, by means of (20),

(24), and (25), the desired quantity _¢(a, b, c, d) can be expressed in terms of f-l(0) where

f is a conformal mapping satisfying (21)-(23). Such functions f are explicitly known (see

e.g. Kobers's dictionary of conformal representations [19, pp. 191]) and are of the form

a - b sn 2 ('7" log z; k) +
, _, + -- (26)/0)=/k,,(_):= 2 sn2(_:1os_;_)-sn'(Tios_;k) 2

Here, w - sn(u; k) is the :Jacobian elliptic function (see e.g. [14, pp. 904]) defined -- via

its inverse u = sn-1(w; k) _ by

fo_' d_ (27)"= sn-_("; k) = ,/(1 - _=)(1- k_=) "

The real number k is a parameter (the modulus of sn) with k • [0,1]. The number K' in

(26) is not a free parameter, but depends on k:

K'=K'(k):=/"_1' . &P (= sn-'(1; V/_ . (28)
dO

X/1 - (1 - k 2) sin 2

9



Similarly,we set

,r/2 d_K = K(k) :=
so x/1 - k 2sin2

(-- sn-l(1; k)) . (29)

Note that sn(u; k) is a doubly-periodic meromorphic function with periods 4K and 2iK _

and poles at the points 2mK+(2n+l)iK', rn, n E 2_. Finally, we remark that the branch

of the logarithm in (26) is chosen such that

log z = log Izl + i arg z , -r < arg z _< 7r.

Using standard techniques from complex analysis, it is readily verified that the func-

tion (26) indeed maps an annulus Ar of the type (22) conforma_y onto the complement of

two disjoint real intervals. Here, the inner radius r of Ar is given by

r-TrK(k)
(3o)

Moreover, the image of the outer boundary Izl -- 1 of Ar under f is just the interval [a, b].

Hence, it only remains to adjust the two free parameters k and r in (26) such that the

inner boundary Izl - r of A_ is mapped onto [c, d]. This requirement leads to the two

equations

a - b 1 + sn2(M; k)

2 1 - sn2(M; k)

a - b 1/k 2 + sn2(M; k)

2 l/k 2 -- sn2(M; k)

a+b

+ -5- = c, (31a)
a+b

-t- _ = d, (31b)

where we have set

M = M(k, 1"):--" K'(k) logr (32)

By solving first (31a) for sn2(M; k) and, subsequently, (31b) for k _, we obtain

_b_- c _ (a - d)(b- c) (33)sn(M;k)=- a-c and k= "_ c-'-_--'_)"

Note that, by (23) and (32), M < 0, and thus, in view of (27), also sn(M; k) < 0. By (33)

and (32), the two free parameters k and r in (26) and the function [ are now uniquely

determined. By (20) and (24), we have

a, b,c,d) = when z0 := y-l(0). (34)

Therefore, it remains to determine the solution z0 of f(z) = 0. To this end, we set

K r [ Irtt0

u0 =--logz0 or, equivalently, z0=expk-_-7- ) . (35 /
/r

10



Using (26) and the first relation in (33), it follows that u0 is the solution of

.n(,,o;k)= sn(M;k)= V.(b _.

Next, recall (e.g. [14, p. 914]) the identity

(36)

1

sn(v +iK';k) =_ ksn(v;k) " (37)

By means of (37), (35), and (33), we deduce from (36) that

/ _rv0 '_r / o(b- d) k)
Uo=vo+iK', Vo:=-sn -l_,vb(a_d), ' and zo=-expk--_- ) .

(38)

Finally, using (34), (25) (with z = z0), (30), (32), and (38), one arrives at the formula

(t _M_x(a, b, e, d) (39)

For the numerical evaluation of (39) it is advantageous to rewrite (39). To this end, let

O(z,_) := _ exp(-Tr,_j 2 + 2izj) (40)

j co

be one of the theta functions (see e.g. [14, p. 921]). By means of (40), it follows from (39)

K' ) O(z2, _o)

that

where
K 7r 7r

)_o= K--7, za= 2--_(vo-M+K), z2=_(vo+M+K).

A straightforward computation, using Jacobi's identity (see e.g. [15, p.272])

1 -z 2 z

(41)

with ,_ = ,_0 and z = za resp. z = z2, shows that the representation (41) is equivalent

to the final formula (43) stated in the following theorem. Furthermore, by the variable

transformation _ = w/_ in (27), we have expressed the elliptic integrals, which occur

in (28), (29), (33), and (38), in terms of the standard form

if0=Rr(.,y,z) :=
dt

J(t + .)(_ + u)(t+ _) '
.,y,z >__o, (42)

of the ellpitie integral of the first kind.
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Theorem 3. Let c < d < 0 < a < b. Then:

x(a,b,c,d)-
t94 (_r(vo - M)/(2K),q)

_4(_(_o+ M)/(2/¢),q) '
0,(¢,q) := 1+ 2_

j'-I

(--1)JqP cos(2¢j), (43)

where

(-_n') _(a- d)(b- c)q= e_ _ , k = _ _ _, K = RF(1,0,1-- k'),

K' -- RF(1, 0, k2), M = _V_b__a - c RF (1, b--"_'_"_)'b- a b - a

 co- o(o-Vb(o T)

(44)

The following corollary will follow readily from the representation (43) and (44) of the
asymptotic convergence factor x.

Corollary 1.

a) x(a,b,c,d) is a continuousfunction on {(a,b,c,d) • _4 [ c < d < 0 < a < b}.

b) Let {an}.eiv, {b.}.eiv, {c.}.eiv, and {d.}.eiv, be given convergent sequences with

limits a, b, c, and d, respectively. Moreover, assume that c. < dn < 0 < an < b. for all

n • IV and that c < d < 0 < a < b. H a = 0 and/or d = O, then

tim _(a,,bn, cn, d,)=l.

Proof." First, note that all the operations in (43) and (44) are continuous as long as

c < d < 0 < a < b holds, and part a) is obviously true. We now turn to the proof of

part b). Let x., q("), k("),..., v_ ") denote the quantities in (43) and (44) evaluated at

aM, b,, c,, dR. We need to check their behavior for n _ oo. There are three cases,

namely

(i) d = 0 < a,
(ii) d< 0 =a,

(_i) d = 0 = a.
In the cases (i) and (ii), the sequences q("), k("), K("),..., v (") converge for n _ oo to

finite limits q, k, K,..., v0, respectively, and K > 0. Furthermore, v0 - -K in case (i)

and v0 - 0 in case (ii). Therefore, in view of (43), to, converges to 1. Finally, consider the

case (iil). Here k, converges to k - 0. By (29), (28), and (44), it follows that

lira K. = 0, lira K" = oo, and lira q. = 0.
n--tOo n-._OO ltl-..-*OO

Using the definition of the theta function in (43), we deduce

lira t_4(_bn, q.) -- 1 for all ¢, • JR,
11--.OO

and hence, by (43), lin_--.oo re, = 1. This concludes the proof of the corollary. •
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Remark 5.

through

The theta functions 04 and 8 in (43) and (40), respectively, axe connected

04(¢,q) - 0(¢ + _r/2,-(logq)/_r), ¢ E l_., 0 < q < 1.

There are whole books filled with the numerous properties and idenities which hold

for theta functions. In the sequel, we will make use of the relations

040r/2,q) = v/5_/_- (45)

and
O0

0,(¢,q)= 1-[(1- 2q2i-1cos(2¢)+q2¢_i-,)(1-q_i)
jr1 (46)

= for all ¢ E R

(s¢¢e.g. [14,pp. 9211)."ere,q is de_ed in (44)withK = K(k)andg' = K'(k) siren
by (29) and (28).

By means of Theorem 3, the asymptotic convergence factor t:(a, b, c, d) can be very

easily computed numerically. For the calculation of the integrals RF of the type (42),

which occur in (44), there axe standard algorithms. For the numerical examples presented

in Section 8, we have used a procedure due to Carlson [4, Algorithm 1]. Finally, in (43),

an infinite series needs to be computed twice. In the following, let ¢ E IR and J E IN.

Moreover, suppressing the parameter q and the index 4, we set

J

0(¢) :-- 0,(¢, q) and 0(J)(¢):--1++2_ (-1)iqPcos(2¢j). (47)

If J is chosen large enough, the fraite series 0(2)(¢) will yield a sufficiently accurate ap-

proximation to 0(¢). We now derive a formula for such an integer J. Using (43), (47),

(45), and the fact that 0 < q < 1, one obtains

[0(¢)- 0(J)(¢)1 = 2[j=j+l_ (-1)iqPc°s(2¢J)

O0 O0 O0

jr J+l j--0 j--0

= q(J+'"(1+ o,(,_/2,q1)= q(J+"(1+ _.

(48)

With (47), (46), and (48), we arrive at the estimate

_< q(J+l) 1 + (r/(2K)) 1/_

(1_ k2)I/'
(49)
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From (49), it follows that the truncated series tg(J)(¢) approximates d(_b) with a relative

error

0(¢) -
if J is chosen as

[log(e(1- k')l/4) + log(l + (Tr/(2K))l/') ]1/'J := [t] wh_ _ := _o_-_

Here, as usual, [t] denotes the integer part of t E ]Ft.

We conclude this section by stating the following proposition which follows as a special

case of a more general result due to Eiermann, Li, and Varga [7, Proposition 3]. This

monotonicity property of the asymptotic convergence factor i¢ will be used in Section 6.

Proposition 2. Let c <_ c' < d' <__d < 0 < a <_ a' < b_ <_ b be given and assume that at

least one of the inequah'ties "<" is strict. Then:

n(a',b',c',_) < ,_(a,b,c,d).

5. A family of Chebyshev approximation problems

As we will see in the next section, the task of finding an optimal polynomial preconditioner

for Az = b leads to a family of Chebyshev approximation problems. In this section, some

results for such approximation problems are presented.

In the following, it is assumed that S :- [a, b] U It, d] is the union of a positive and

negative interval with arbitrary, but fixed endpoints c < d < 0 < a < b. Moreover, l E _T

always denotes a positive integer. Finally, set

r := {(_,w) e _x_lw > 0}.
We will study the following family of approximation problems depending on the two pa-

rameters (/_, w) E F:

_a(_,w) := rain Ill- AsII_, IlY- _sll_ := max I_(A)(f(_)- As(A))[ (50)
,end.._) _ES '

where _ , -

w if ,_<0 ' 1(_)= # if ,_<0

Remark 6. For the special case p - w - 1, (50) reduces to the approximation problem

(11) (with n replaced by l) which arose in Section 2 in connection with error bounds for

the MR method.

(50) is a linear Chebyshev approximation problem: We seek to approximate f(,_) by

polynomials of the form ,_s(,_) E II_ r) in the weighted uniform norm [1"1[_. Note that 0 ¢ S,

and this guarantees that Haar's condition is satisfied. Standard results (see e.g. [21]) from

approximation theory show that there always exists a unique optimal polynomial for (50)

which is characterized by an equioscillation property. We summarize these results for (50)

in the following

14



Proposition 3. Let l E/Y and (_, w) E F. Then:

_) The_ e,_ts a _q_e opt"-_ polyno_ ,_(_;_,_) e n_'___o_(5o).
b) ,s • ll}r_ ) is the optimal polynomial for (50) if, and oaly if, there exist I q- 1 extremal
points

c < Ao < Al < ... < Ak..,_l < d, a < Ak.,o

of w( A ) - As(A) and a number y • R such that

< Ak,,o+_< ... < At < b (52)

_(A_(f(A,)- A_,(A,))= _ (-1?_
t (-1p-ly

for j = O, 1,..., knea - 1

t'or j = k,,0, k,,g + 1,..., I
(53)

Moreover, if s is optimal, then 7t(#, w) = lyl.

Here, a point A* • S is called an extremal point of f - As(A) if

Iw(A*)(f(A*)- A*,,(A*))[ = Ill- Asll,,,.

The following corollary is a simple consequence of part b) of Proposition 3.

Corollary 2. Let 8_(A; #, w) be the optimal polynomial of (50).

a) s_i- o if, and onIy if, t = 1 and w = 1/_.
b) Unless _ _ O, there axe at least 1 + 1 and at most ! + 3 extrema/points o[f- As_ in S.

Moreover, at most l - 1 o£ these extremM points are contained in the interior (a, b) U (e, aT)
orS.

Proof: By using (52) and (53), one readily verifies part a).

We now turn to part b). Fiat, note that, by part b) of Proposition 3, jr _ As_ has at least

l + 1 extremal points in S. Next, recall (cf. (51)) that f is constant for A > 0 and A < 0,

respectively. Hence

if(A)- A._(A;_,,,o))'= -(A._'(A;.,w))' =: r_A) forana # O. (54)

Now assume that _ _ 0. Then p is a polynomial of degree not exceeding l - 1 and

p _ 0. This shows that p has at most l - 1 zeros. On the other hand, in view of (54),

p(Aj) - 0 for all extremal points Ai • S\ {a,b,c,d} of f- As_, and thus there areat most

l - 1 such "inner" extremal points Ai. Therefore, altogether, there can not be more than

l - 1 + 4 = l + 3 extremal points in S. •

In the next section, we will also make use of the fact that the optimal value of (50)

depends continuously on the parameters p and w.

Lemma. Let I • 1V. Then, the optimal value 7z(/_, w) of (50) is a continuous _nction of

(_,w) • r.

We remark that, for w fixed, it follows from a standard result (see e.g. [30, Lemma 13.1])

in Chebyshev approximation theory that 71(#, w) is a continuous function of it. The proof

given in [30] is easily adapted to the family of approximation problems (50).
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Proof of the Lemma: Let _/I, #2 E _:_, Wl , w 2 _> 0 be arbitrary, and denote by

fl, f_, _, w_ the associated functions (51). Furthermore, assume that l E ]_q is fixed, and

let s_' and s; be the optimal polynomials of (50) corresponding to (_1,wl) and (#2,w2),

respectively. By using the optimality of s_, the triangle inequality, and the obvious fact

that [[" [[_ -< max{1, wl/w2}l[. [[_,, we obtain the estimates

< ,_i 1.1- .21+ max{l, w11w2} 7t(_2, w_).

(55)

With 7a(#2,w2)< IIf21l_2 = max{l, l/_21w2}, it follows from (55) that

_,(.1,wl)- _(_,=,w=)_<wl I_,1- ml+ max{O,(wl-_2)/_2} max{1,1.=l_=}. (56)

Obviously, we may exchange the parameters (Pl, wl) and (/z2, w2) in (56). Therefore, (56)

leads to the inequality

I_'t(m,_,1) - _t(_,=,_2)I
_<Im - p.2lmaX{Wl,W-,}"t-iwl - _21max{l/,,.,1,1/_2} max{l, 1.11wl,1.21_2}

which implies the continuity of 7t(#, w). •

Remark 7. In general, 7t(#, w) is not differentiable. Typically, differentiability gets lost

when the number kneg = kneo(Iz, w) of negative extremal points in (52) and (53) changes.

The following example inustrates this behavior. Let l = 2, S - [1, 3] U [-2,-1], and

/_ -- -2 be fixed. It is straightforward to verify, by means of part b) of Proposition 3, that

the best polynomial _*(A; w) and corresponding optimal value 7(w) of (50) are given by

,_*(A;w) "- 2(4_--- A), ")'(w) = 7' if 0 < w -< 0.1,

and by

s*()q w) -- 2(2- A/_) _- 2 + 1/_ _/ 3w if 0.1 _< w _< w0._2---17_' _f(w)--_'b2--1_' with_'-l+2 1+2w'

Here w0 is the unique root of 4w 2 - 188w + 49 = 0 in the interval (0, 1). Moreover,

the extremal points are 1,2,3, if 0 < w < 0.1, -2,1,2,3, if w = 0.1, and -2,1,_, if

0.1 < w _< w0. Obviously, 7(w) is a differentiable function of w for 0 < w < wo, w _ 0.1,

but, since

lira 7'(w)=O and lira 7'(w)=100/147,
w-','O.l--O uJ--*O.l+O

7(w) is not differentiable for w = 0.1.
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6. Indefinite polynomial precondltloners

In this section, we return to the polynomial preconditioned M'R method for solving the

linear system (1), Az = b. In particular, the question of how to choose an appropriate

polynomial a for the preconditioned systems (2) resp. (3) is addressed.

As in Section 2, it is always assumed that A is a given indefinite Hermitian N x N

matrix and that a, b, c, d G _ are known such that

_(A) C S := [a,b]u [c,d] where c < d < 0 < a < b (57)

(c£ (9)). In this paper, we will not consider the problem of how to actually obtain such

bounds. The reader is referred to [3,11] where some results regarding this question can be
found.

First, we note that the coefficient matrix As(A) of the preconditioned systems (2) or

(3) is HerInitian if, and only if, a is a real polynomial. Therefore, in the following, it is

always assumed that s G H_r_.)1 where I • 1_ is an arbitrary, but fixed integer. Furthermore,

in order to guarantee that As(A) is nonsingular, we require that s(A) _ 0 for all A • S.

Since 8 is continuous and in view of (57), this condition implies that there are essentially
two different cases: Either

_(_) > 0 for _ _ • s, (5s)

or

_.(_) > 0 for an _ • [a,b], and _,(_) < 0 for an _ • [c,d]. (59)

Clearly, also the two cases with reversed inequalities may occur, but these can always be

reduced to (58) resp. (59) by replacing s by -s.

If (58) is satisfied, then, by (57), the preconditioned matrix As(A) is positive definite.

For the case (58), the standard strategy for the choice of the polynomial s is to require

that As()_) approximates the constant function I as close as possible on S. Here, closeness

is measured in the uniform norm on S, i.e. 8 is given as the optimal solution of the

approximation problem (50), (51) with p -- tv - 1. This case was studied in detail by

Ashby [2] and Ashby, ManteuKel, and Saylor [3].

If (59) holds, then, in view of (57), the preconditioned system remains indefinite, and
we will use the

Definition 1. A po/ynom/al s •Hlr_.) 1 is cal/ed an inde_nite polynomial preconditioner

for Az -- b if (59) is satisfied.

In the following, we will investigate indefinite polynomial preconditioners and, in particu-

lax, develop a strategy for an optimal choice of s.

From now on, it is always assumed that a satisfies (59). The criterion for selecting

the preconditloner which we will propose here is based only on properties of the coefficient

matrix As(A), and hence is the same for left and right polynomial preconditioning (2) and

(3). For simplicity, we will consider only the approach (3) in the sequel. More precisely,
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let z0 E C N be any initial guess for the solution of Az = b, and let yn, n = 1, 2,..., be the

sequence of iterates generated by the MR method (Algorithm 2) applied to

Aa(A)y-- b- Azo (=: r0), with starting vector y0 :- 0. (60)

The iterates and residual vectors corresponding to the original system Az -- b are then
given by

z. -- zo + 8(A)y, and r. "- b- Azn - r 0 - As(A)y., (61)

respectively. Notice that only the iterates yn are updated at each step. The corresponding

approximate solution z. of Az -- b needs to be computed only once, namely in the very

last step of the algorithm. Furthermore, we remark that, in view of (61), the residual

vectors of Yn( with respect to (60)) and of z, (with respect to Az = b) are identical. This

is a slight advantage of right polynomial preconditioning over the approach (2).

Next, using the results from Section 2, we state error bounds for the preconditioned

MR method. Setting

_:= rain As(A), _:= max As(A), _:= rain As(A), aT:= max As(A), (62)
x_[,,b] xe[*,b] _e[c,d] Xe[c,d]

it follows from (57) and (59) that

a(A,(A))c_:=[a,_]U[_,a_ and _<J<0<a<_. (63)

Obviously, the numbers defined in (62) depend on s, and we will indicate this, if necessary,

by writing a(_), _(_), e(s), J(a). Then, in view of (63), Theorem I yields the estimates

lib- A .II 
IIb- Az011z

_< E.(a,_,e,_, n= 1,2, .... (64)

Furthermore, by (12), the error bound in (64) behaves like

for  rge. (65)

Therefore, (64) and (65) suggest the following notion of an optimal indefinite polynomial

preconditioner.

Definition 2. An indefinite polynomial preconditioner a* E II_:)l is called opthnaI if

_(,*) _< _(+) (66)

[or aI1 indefinite polynomial preconclitioners s E II__ ) • Here, and in the sequel,

:= e(,), z(,)).

Finally, we get to the promised connection between indefinite polynomial precondition-

ers and the family of approximation problems (50). Let (t_, w) E F and s*()_) := s_'()t;/J, w)
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the corresponding optimal polynomial for (50). First, we characterize those cases where s*

yields an indefinite preconditioner. With (50) and (51), it follows that the numbers (62)
associated with s* are

a(.*)=l-_.C_.w). _(.*)=l+_.(_.w).

I/; 1/)

(67)

In view of (59), (62), and (67), s* is an indefinite polynomial preconditioner if, and only
if, (p, w) E Fz. Here, we have set

Moreover, by (67), if s* is an indefinite polynomial preconditioner, then

_,(_,,_),¢(,*)= g,(_,,,,,):=,¢(1- "n(_,,,,,),I+ "y,(_,,,,,),_,
It)

,/_ + 71(#_,w)). (69)
t/)

Notice that g,(/_, w) is a well-defined function for C/z, w) e r,.

After all these preliminaries, we can now state the main result of this section in the

following form.

Theorem 4. Let l E IV.

a) Let s E IIlr__)_ be an/-deKu/te polynomiaI precond/tloner, a, _, _, 7d the corresponding

numbers de_ned in (62), and set

/_1 = _'-"-- and wl = --'-- . (70)
b+a d-e

Then, the optimalpolynomhl s*(_) := "I(_;m,_) of (5O)_th paramete_ _,_and _
an indefinite polynomial precond/tioner and, unless s* =_ s,

l¢(s*) < _(s). (71)

b) There e_dst parameters _to and Wo such that

g.(.0._0) = rain g.(u._). (.0.w0) • r,. (72)
(g,w)_r,

c) Let I_o and wo satisfy (72). Then, the optimal polynomiM s_(A; g0, w0) of the ap-

pro_/mation problem (50) with parameters fro and wo is an optimal inde/in/te polynomial

preconditioner.

Proof: First, we prove part a). Let s • H_[)_ be an indefinite polynomial preconditioner,

and hence, by (63), _ < t/< 0 < a < _. Moreover, by replacing s by (2/(a + _))s, we may

assume without loss of generality that

a + _ -- 2. (73)
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Note that this does not change the asymptotic convergence factor it(s) associated with

s. Indeed, it is easily verified that _(s) - _¢(c_s) for all a G _t \ {0} and all indefinite

polynomial preconditioners 8. Now, by using (62), (70), and (73), we obtain

:_ I1- _,,(_)1= max1'.'.'1(#, - _('_))l = z;-..._._._
_ela,b] _e[c,d] 2 "

(74)

In view of (50) and (51), we conclude from (74) that

_/:= "y,(_l, w,) _< with " = " holding ifi" s = s*. (75)
2

With (67), (70), and (73), it follows from (75) that

e(_)_<e(:)< d(:)< _(_)< o< a(,)< _(:)< _;(:)_<_;(_) (76)

where, unless s =_ s*, at least one of the inequalities "<" is strict. In particular, (76)

shows that s* is an indefinite polynomial preconditioner. Moreover, by Proposition 2, (76)

implies (71).

We now turn to the proof of part b). In view of (69), (68), part a) of Corollary 1 (see

Section 4), and the Lemma proved in Section 5, the function gt(l_, w) is continuous on P,.

Furthermore, by (12), (68), and (69),

9,(P,w) < 1 for all (p, w) E Pt. (77)

Next, remark that, by (68), the boundary 8Pt of l"t is given by

or,= {(_,,_) Em. xR I _ >0, 1- _,(#,w) = o, and/or 1_+'T,(_,w)/w-O}. (78)

By means of (69), (78), and part b) of Corollary, we conclude that

lira 9,(/_, w) - 1 for all (_, _) E or,. (79)
(.,_)-(_,_), (_,w)er,

From (77), (79), and the continuity of g,, it follows that gt attains its minimum on F,, i.e.

(72) holds true.

Finally, in view of (69), (66), and (71), the statement of part c) is an immediate consequence

of part a) of this theorem. •

By means of part c) of Theorem 4, an optimal indefinite polynomial preconditioner

can be constructed via the numerical solution of approximation problems of the form (50).

In the next section, we sketch an algorithm for this task.
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7. A Remez type algorithm

The standard tool for the numerical solution of general real linear Chebyshev approxima-

tion problems is the method of Remez (see e.g. [21, pp. 105] or [30, pp. 163]). For the case

/_ = w = 1, de Boor and Rice [6] devised a Remez type procedure for the approximation

problem (50) which exploits the special structure of (50). In this section, we outline an

extension of their algorithm for the general family (50).

Let l E IN, # E _., and w > 0 be given. We are concerned with the approximation

problem (50) where the functions f and w are defined in (51) and S = [a,b] u [c,d] is the

union of two intervals with endpoints c < d < 0 < a < b. In the following, let s 6 II__)1

be any candidate for the optimal polynomial s* of (50). It will be convenient to introduce

the so-called residual polynomial

p(A)= p(A;s):= 1- As(A) (80)

corresponding to s. Note that, by (51) and (80),

{p(A)_(A)(f(A)-AsiA))= _(._

if A>0
(81)

1+ p(A)) if A< 0

The Remez type procedure for the numerical solution of (50) is based on the eqnioscil-

lation property stated in part b) of Proposition 3: We seek a polynomial s • II (Oi-1

with l + 1 extremal points (52) such that (53) holds for some number y • JR. For any

k,,g = 0,1,..., l, denote by

Ak..,:= {A = (Ao,A_,...,A_)Ic < Ao < --.< Ak..,-,< d, a < Ak..,< -" < A_< b}

the set of all possible Aj for which (52) holds. By means of Ak..,, we can parametrize all

the polynomials s which ful_ (53).

Proposition 4. To each h = (A0, Aa,..., AI) • Ai,,.,, k,, e = 0,1,..., I, there is a unique

polynomial s(-;A) • II}r) 1 and a unique number y(A) • _ such that (53) holds true.

Moreover, s(.; A) is de£ned via

kne# --I

1 - As(A; A) := _ (1 - _u+ (-1)Jylw)Lj(A) +
j=0

t A- Ai

L,(A).= II A,- A,'
i=O

l

(-1)_-lyLi(A),
j=k., e

(82)

and y = y(h) _ Sven by

y:--

1 + (# I) V'k"'e-1 r.(n_
-- Z..,j= 0 - ""J _J

_.._ k.,, e --1 ! "(1/_)_j=o (-1)iL_(o)+ E_fk..,(-1)i-_L_(o)
(83)
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Proof: By means of (81), we rewrite (53) in the form

1 - _ + (-1)iv/wP(_i) = (_l)j-_v
for j = 0,1,..., k,ee - 1

for j = kneg, kneg -I- 1,..., I
(84)

where p is the residual polynomial (80) corresponding to s(.; A). Here y E ]lt is still a free

parameter. By the Lag'range interpolation formula, for may fixed y E JR, there is a unique

polynomial p E H_ r) which satisfies (84), and p is given by (82). It remains to determine

y. For this purpose, we remark that p is the residual polynomial (80) of s(.; A) E H_)_

iff p(0) = 1. Using the Lagrange representation (82) of p, it is readily verified that this

condition is equivalent to the formula for y in (83). Finally, we notice that -- as is easily

checked by means of (52) and the definition of Lj in (82) -- all the terms in the sums

of the numerator of the right-hand side of (83) have the same sign, namely (-1) t"',-_.

Hence this numerator is never zero and y is well defined by (83). •

In the sequel, we will use the notation

,(A;A):= ,,,(:_)(/(A) - A,(A;A)) (85)

for the error function corresponding to s(.; A). Now, in view of Proposition 4 and part b) of

Proposition 3, the approximation problem (50) is reduced to the task of finding the unique

vector A* E At, , with k* e. E {0,1,...,/}, whose components A_ are indeed extremal
points of f(A)---_A_()t; A*). B_y (53) and (85), this last requirement is equivalent to

(),(A_;A*)I =) ly(A*)I-m_I,(A;A*)I.
AES

(86)

Furthermore, note that for all A = (A0,..., At) E At.., and kncg E {0,1,..., I}

( I,(A_;A)I -- ) iV(A)I< ly(A')I- _d_,w) < maxl,(A;A)l, if A # A*. (87)
AES

The optimal vector A* which satisfies (86) can be computed by a Remez type iteration.

We now describe a typical step of such a procedure. After, say n, iterations, the algorithm

, k (n) to A*. Unlesshas generated an approximation A := A(*) E At.., where k.¢g := -,0,

A = A*, one constructs the next iterate ,Z.:= A(-+ _) as follows. In view of (86) and (87),
the choice of the dements )_j of A aims at fulfilling

I,(A-_;_)I _ maxl,(A;X)l, j=0,1,...,t,
_ES

as good as possible. In order to achieve this, one first computes A_ which correspond to

some approximate local maxima of ]e(A; A)I near At under the additional constraint that

A' := (:_,, Ai,..., A;) _ A_..,.
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Next, it is checked whether any of the endpoints A, • {a, b, c, d} of S satisfies [_(A,; A)I >

ly(A)I and can be exchanged with one of the dements, say A_0 of A' such that

3, := A' u {A,}\ {A_,}• A_..,.

This procedure guarantees that/_ approximates (86) better than A in the sense (eL (87))
that

iy(h)l < ly(3,)l < ly(A*)l.

The iterates A (n) of such a Remez procedure can be expected to converge quadratically

to A*. Here, we will not give a convergence proof and, instead, refer to the approximation

theory literature (see [21, 30] and the references therein) for a more general study of Remez

type methods.

The outlined Remez procedure for the approximation problem (50) can be summarized
as follows.

Algorithm 3 (Sketch of a Remez procedure for (50)).

O) Choose kne_ • {0,1,...,I} (e.g. kr, eg = [l(d-c)/(b-a+d-e)])

and A = (_o,..., _) • Ak_,,.
Repeat steps 1) through 4) until convergence:

1) trsing (83) and (82), computey := _(A) and some_presentation (e.g. Newton
interpolation) of the residual polyTmmied p corresponding to s(.; A).

2) Forj = O, 1,...,l:
Set

ej(A ) := (sign e(Aj; A))e(A; A)

and compute AS such that:

O) ej(A'j) app_o,_ates some Ioc_ maximum ote_(_) near A_,
I !(ii) A' := (A0,_,--., _) • h_,,,.

3) Compute ._ := (Ao, A1,---,_/) as :follows:

(i) Compute rio = e(e; A) and r/1 "- e(Ao;A). /£ kneo = O, set rll -- -ril.

I$ rlorh < _y2:

Set A0 = c, Aj = A__ 1 :for j = 1,..., I, _:,e_ = kneg + 1,

and go to 4).
(ii) Compute rl0 = e(d;A) and r/1 = e(Ak,.,;A). Hk.,, = O, set Th = --_1.

If TIO_h < _y2:

Set Aj = A_ for j = 0,..., k.. o - 1, Ak.., = d,

k-,0 = k.,g + 1, _i = "_ :for j = _.,,,..., l,
and go to 4).

(iii) Compute r/0 = _(a; A), and,

i:fk,,,_ < I, rll = e(A_,.,;h), resp., i/'k.,_ = I+1, r_ = -e(A_;h).

Ifrlorh <--y_:

Set A1 = AS :for j = 0,..., k,,._ - 2, _:,,_ = k,,u - 1,

_.., = _, _ = _ _o_j = _:,,_+ 1,... ,t,
and go to 4).

(88)
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(iv) Compute r/o = e(b; A), and 171 = e(At; A). //'k,,, o = I + 1, set rll = -rll.

_or/1 < _y2:

Set Aj : A_+ 1 for j : 0,..., 1 - 1,

X_= b, k.eu = k.eg - 1,
and g.oto 4).

(v) Set A := A', _:"ee = k,,,_.

4)set A:= X, k.., := max{min{L.,,t},O},and go to 2).

Remark 8. Practical procedures for computing the approximate local maxima in step 2)

of Algorithm 3 can be found in [12]. For the numerical examples presented in the next

section, we have used quadratic interpolation. E.g. for an interior point Aj E (a, b) U (c, d)

one proceeds as follows. Let _0 :-' Aj and _ := Aj+I (resp. Aj-1) if e_(_0) > 0 (resp. < 0).

Then, set _1 = _ except for the case that j -- I (resp. j = 0) or for the case that _ and _1

are not contained in the same interval of S = [a, b] U [c, d]. In both cases, we choose _ as

the endpoint of S which lies between _0 and _. Next, the function ej is interpolated by the

quadratic q defined by q(_0) = ej(_0), q(_l) - ej(_l), and q_(_0) = e_(_0)- If q attains its

maximum, say at _*, we repeat the whole process a second time with _1 :-" _*. The new

resulting _*, if it exists, is our canditate for A_. If one of the two quadratic interpolations

fails or if the resulting A' would not satisfy (52), a crude local search for the maximum

near Aj is applied, based on simply evaluating ej(A) for several A _ Aj and determining

the largest value.

Remark 9. In view of (81), the error function (85), e, and the residual polynomial p

defined in (82) are connected through

,ix;A) = ,J"KA) if > o (89)
[w(tt-l+p(A)) if A<0

In particular, the function (88), ej, and its derivative can easily be computed via (89) and

some representation of the polynomial p.

8. Numerical examples

Based on the connection with the family of approximation problems (50), we have com-

puted indefinite polynomial preconditioners in a number of cases. For the solution of (50),

the Remez procedure described in the previous section was used. Optimal indefinite poly-

nomial preconditioners were computed by solving the unconstrained optimization problem

(72) numerically. Recall (cf. Remark 7 in Section 5) that the function gt in (72) is continu-

ous, but only piecewise dif[erentiable. The numerical evaluation of asymptotic convergence

factors was done as outlined in Section 4.

In the sequel, we present the results of a typical example. The set S is given by

S := [a, b] U [c, dq with a = 0.01, b = 0.99, c -- -0.59, d = -0.1. (90)
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The asymptotic convergencefactor, which correspondsto no preconditioning, is

to(a, b, c, d) -- 0.9590 ....

For I = 2, 3,..., 10, we have computed indeFadte polynomial preconditioners via solving

(50) with the following parameters. The first choice

/_-I "- --I and w-1 -- 1 (91)

aims at clustering the positive and negative eigenvalues of As(A) uniformly around 1 and

-1, respectively. The resulting asymptotic convergence factor is denoted by I¢-1 in the

table below. A second obvious strategy is to choose the parameters in (50) such that

the two intervals (63), ,.q :-- [a, _] U [_, _ containing the eigenvalues of the preconditioned

coeffcient matrix As(A) have the same relative length and position as the original intervals

[,,,b]u [c,a], i.e.
b+a _+a b-a _-a

and (92)
d+c aY+_ d-c g-_"

It is readily verified that (92), is fulfilled for the parameters

d+c b-a
and Io 1 _

_1 = b+a d-c

(cf. part a) of Theorem 4). The resulting asymptotic convergence factor for this choice

will be denoted by t¢1. Note that for the example (90) considered here

It1 =-0.69 and wl = 2. (93)

Finally, via part c) of Theorem 4, we have also computed the optimal asymptotic conver-

gence factor tcot,t and the corresponding parameters #opt, wopt of (50). The following table

lists the results for the three different strategies.

Table 1

These results are quite typical for the numerical experiments which we have performed.

In particular, they show that the simple strategy (91) leads to very poor convergence rates,

in particular as I increases. The second strategy leads to better results, but is still by far

inferior to the best possible choice. Also notice that the optimal parameters #opt and w,pt
exhibit a rather erratic behavior as I increases.

The following two plots show, for two cases, the polynomials Xs_0(X ) corresponding

to the indefinite preconditioned coefficient matrix As(A). Here s_0(X ) denotes the optimal

polynomial of (50) with I - 10. For Figure 1, the parameters (93), pl = -0.69 and wl = 2,

were used. Figure 2 corresponds again to # = #1, but with increased weight w = 10.

Figure 1
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Figure 2

Finally, the last two plots show the surfaceof the function 1/g_(#, w) (c£ (69)) whose

maximum, in view of part c) of Theorem 4, corresponds to an optimal indefinite polynomial

preconditioner. For the plots we have set gl(/_, w) - 1 if (p, w) _ Fi (cf. (68)). In both

cases, the left corner is the point (#, w) = (0, 0). The axis pointing towards the reader is

the p-axis. Figure 3 displays the results for I -- 3 and Figure 4 for l - 10.

Figure 3

Figure 4

9. Conclusions

We have investigated polynomial preconditioners for Hermitian indefinite linear systems

which lead to indefinite preconditioned coefficient matrices. In particular, it was shown that

such polynomials can be obtained via the solution of a two-parameter family of Chebyshev

approximation problems. Based on the concept of asymptotic convergence factors, we

have introduced the notion of an optimal indefinite polynomial preconditioner. In order

to actually compute such an optimal precondit_oner, One needs tominimize a continuous,

but only piecewise differentiable function of two variables. Moreover, each evaluation of

this function requires the solution of an approximation problem of the type (50). A Remez

type procedure for the numerical solution of (50) was outlined. A few numerical examples

of indefinite polynomial preconditioners were presented. In a forthcoming technical report,

we will report on numerical tests for the minimal residual algorithm combined with the

indefinite preconditioners developed in this paper and compare this approach with other

preconditioning strategies for indefinite Hermitian matrices.
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1 2 3 4 5 6 7 8 9 10

_¢-I 0.986 0.974 0.962 0.957 0.937 0.937 0.922 0.915 0.906

I¢I 0.959 0.936 0.932 0.918 0.908 0.902 0.886 0.885 0.869

I¢opt 0.948 0.905 0.874 0.859 0.821 0.820 0.776 0.752 0.734

P,,pt -1.92 -0.68 -2.37 -0.68 -1.92 -1.96 -1.68 -3.78 -1.60

w_t 0.65 3.40 0.74 5.80 1.45 1.40 2.70 0.76 4.40

Table 1
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